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Abstract

A method is presented for determining
the location and amount of damage in a
structure based on active member transfer
function characteristics and artificial neural
networks. The method relies on using the active
members, which are already present for
structural control, to detect and locate damage
in the structure. The neural network is trained
for a number of known damage cases where the
poles and zeros in the active member transfer
functions are used as input training data. Two
sample problems are given which demonstrate
the feasibility of the method. Various simulated
damage cases were run; some where the damage
is within the domain of the training data and
some where the damage is outside the bounds of
the training data. In either case, the neural
network is able to locate the damaged members
and give a good estimate as to the amount of
damage in the member.

Introduction

The detection of damage in structures is
a topic that has considerable interest in many
fields. Detecting damage in space structures
subjected to the harsh environment of space
could allow the repair of the structure to occur
before the damage threatens the mission
objectives. Offshore oil platforms constantly
have problems with potential member failure in
the corrosive sea environment. Buildings and
bridges, where structural failure proves
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catastrophic, would also benefit from a reliable
method of detecting and pinpointing structural
damage.

In the past many methods for detecting
damage in structures have relied on finite
element model refinement methods [1-4].
Hajela and Soeiro [1] determined the damage
present in a structure by updating the finite
element model to match the static and dynamic
characteristics of the damaged structure. Their
method was an outgrowth of those presented in
References 2 and 3 where undamaged members'
section properties changed during the model
update process, thus smearing the damage over
a wide portion of the structure and making
specific damage location difficult. Hajela and
Soreiro also extended their damage detection
techniques to composite structures [4] where a
similar gradient-based optimization scheme was
used to update the finite element model.

Other methods of detecting damage in
structures rely strictly on measured data.
Cawley and Adams [5] used only natural
frequency data, Pandey et al [6] used mode
shape curvature data, and Swamidas and Chen
[7] used strain, displacement, and acceleration
data to monitor and detect changes and
damages in various structures. These methods
require comparing measurements of the
structure in the nominal (undamaged) state with
those at a later date where some damage is
potentially present in the structure. These
methods have the drawback that they can only
identify that the structure has changed; they
cannot identify the location and extent of the
damage.



For space structures in particular,
stringent pointing and/or slew/settle
performance requirements will require some
form of structural control. The latest methods
of structural control utilize active members,
composite members with embedded sensors and
actuators [8], for controlling flexible modes.
With the sensors and actuators already present
for the control task, these structures are ready
for the development of damage detection
algorithms that rely solely on the measurements
available from the active members. But the
difficulty = remains in  processing the
measurements generated by the active members
and in correlating the data with actual locations
and levels of damage.

Neural networks have the unique ability
to be trained to recognize known patterns and
classify data based on these patterns. Neural
networks have been used with success for
structural design tasks [9] and for classification
of experimental data such as sonar target
classification [10]. With proper training neural
networks should be able to process the transfer
function measurements from the active
members, classify the data, and provide a tool
for determining the location and level of damage
present in a structure. '

This paper presents a structural damage
methodology in which only active member
transfer function data is used in conjunction
with an artificial neural network to detect
damage in structures. Specifically, the method
relies on training a neural network using active
member transfer function pole/zero information
to classify damaged structure measurements and
to predict the degree of damage in a structure.
The method differs from many of the past
damage detection algorithms in that no attempt
is made to update a finite element model or to
match measured data with new finite element
analyses of the structure in a damaged state.

Damage Detection Methodology Overview

Transfer functions taken of structures
before and after some form of damage has been
introduced show changes in the pole/zero
spacing and, perhaps, pole/zero patterns. It is
easy to see these changes when reviewing them,
but it is difficult to classify them. For example,
Figure 1 shows two transfer functions taken of a
structure with and without damage. The
differences in pole/zero spacing are small, yet
detectable, to the naked eye. However, there is
no convenient way to correlate the pole/zero
spacing and the location and amount of damage
present in the structure. Furthermore, given the
transfer function of the damaged structure, no
adequate method exists for locating which
structural members are damaged and how much
damage is present.

The method presented in this paper
utilizes finite element data to simulate damage in
a structure, with the resulting active member
transfer functions used as input training data in
an artificial neural network. The method
assumes that a reasonable finite element model
of the structure in the nominal configuration
(i.e., without damage) is available and yields
transfer functions that properly characterize the
structure.

A flow diagram, outlining the details of
the damage detection methodology, is shown in
Figure 2. A set of members that are assumed to
be at most risk within the structure are
identified. These members, which may be a
subset or the complete set of members within
the structure, will subsequently be used to
generate training data for the neural network.
Each of the selected "at risk" members' cross
sectional areas are varied and the resulting
pole/zero information within the active member
transfer functions saved. Using the pole/zero
information as inputs to the neural network and
the corresponding member cross sectional areas
as outputs, the neural network is batch trained
until a suitable level of error bound is achieved.



(Achieving this error bound is most likely an
iterative process involving the number of
neurons in the hidden layer, the learning rate,
and the number of iterations used to train the
network.) The resulting neural network weights
and biases represent a mapping from pole/zero
information to structural member cross sectional
areas. Given a measured set of pole/zero data
on a potentially damaged structure, the neural
network output provides the location of the
damaged members and an estimate of the cross
sectional area of the damaged members.

Active Member Description

The active members used in this work
are similar to those described in References 8
and 11. Figuré 3 shows a schematic of the
active portion of the members. Each active
member consists of a host material, either
graphite composite or a metallic material, with
piezoceramic sensors and actuators resident
with the host material. In the case of a graphite
composite host material, the sensors and
actuators are usually embedded within the layup
of the composite for enhanced sensing and
actuation and for added protection from hostile
environmental conditions. In the case of a
metallic host material, the sensors and actuators
can be bonded to the external surface of the
host member. For the case of a truss member,
where only axial sensing and actuation are
required, the sensors and actuators on all four
sides of the active member are tied together to
cancel any imperfections in the alignment and
layup of the sensors and actuators and to
produce (or sense) only axial motions. On each
face of the active member are two sensors; one
colocated with the actuator and one nearly-
colocated with the actuator. Averaging the two
sensors together can give a transfer function

that is advantageous for control purposes [12].
This is accomplished by varying the pole/zero
spacing and pattern within the active member
transfer function by changing the relative
weights between the colocated and nearly-
colocated sensors.

As a structure changes, the transfer
functions between the actuators and the
colocated and nearly-colocated sensors change.
By monitoring these changes, specifically the
pole/zero pattern and spacing within the transfer
functions, damage to the structure can be
detected.

Neural Network Description

A neural network consists of many
simple elements operating in parallel. The
elements were originally conceived to simulate
the processes of biological systems where many
processes occur in parallel. The function of the
neural network is determined by the
connectivity of the network and the weights
assigned to the neurons. Neural networks have
been used in the areas of speech interpretation,
pattern recognition, and process control. One
of the main features of neural networks is their
ability to be trained to recognize known patterns
and classify data. Once trained, the neural nets
can be used to predict future outcomes or
classify data when given a new set of input data.

Shown in Figure 4 is the schematic of a
typical neural network. This network has a set
of inputs, a single hidden layer of neurons, and a
set of outputs. In general, multiple hidden
layers of neurons can be used, but this point will
be discussed later regarding the structural
damage detection problem. The output from
each neuron in the hidden layer is given by the
tangent sigmoidal function

f(B) = tanh(B)

where the input to the neuron is



For the tangent sigmoidal function, input values
between +% and —9° are mapped to output
values between +1 and -1. Outputs from the
hidden layer were linearly combined to produce
the outputs of the neural network.

For the work reported on herein, the
inputs consisted of the imaginary parts of the
transfer function poles and zeros and the
outputs consisted of the cross sectional areas of
the truss members. For the generic structure
with n active members, the input training data
consists of 2n sets of zeros (i.e., a set of zeros
for the colocated sensor transfer function and a
set of zeros for the nearly-colocated transfer
function), a single set of structural poles, and
the feedforward voltage produced by the
sensors when operating the actuators well below
the dynamics of the system. This methodology
has assumed that local "surge" modes of the
active member are beyond the frequency band of
interest.

Example Problems

Ten Bar Truss

The example structure on which the
previously  outlined  damage  detection
methodology will be demonstrated is the
ubiquitous ten bar truss structure shown in
Figure 5. This structure has been used for many
structural optimization methodology
demonstrations including one utilizing neural
networks [9]. The nominal design for the
structure without active members typically
consists of all ten aluminum members having a
cross sectional area of 1.0 in2. Active members
were substituted for element number 1 (the
bottom root longeron) and for element number
8 (the upwardly pointing root diagonal). The
piezoceramic sensors and actuators were
designed to have matched stiffness to the local
region of placement. This involved cutting the
aluminum portion of the active truss members
so that the overall stiffness characteristics of the

active member approximately match those of the
inert aluminum members. The ten bar truss
structure with this baseline design has the
natural frequencies of 13.6, 39.0, 40.2, 75.6,
82.3, 93.0, and 94.0 Hz.

Transfer functions between the active
member actuators and sensors were generated.
A typical set of transfer functions for the two
active members is shown in Figure 6. Note that
the colocated sensor in either case has a
relatively large feedforward term when
compared with the nearly-colocated sensor.
This feedforward term gives an indication of the
stiffness of the active member relative to the
remainder of the structure. Thus it can be used
as an indicator of the health of the active
member itself. In addition, the location of the
poles and zeros gives an indication of the health
of the remainder of the structure.

Input training data for the neural
network consisted of the level of feedforward at
the four sensors as well as the imaginary parts
of the transfer function poles and zeros. Output
training data for the neural network consisted of
the cross sectional areas of each of the ten bars
in the truss. Additional training sets were
obtained by decreasing the stiffness of a member
of the truss by a known amount and presenting
the resulting input and output training data, as
described above, to the neural network.

All results presented below were
obtained using a neural network with a single
hidden layer of 9 tangent sigmoidal neurons.
Additional configurations of neural networks
were trained and used to locate and predict the
damage in the ten bar truss, but did not achieve
better results than the single layer, 9 neuron
network. Two networks that achieved
approximately equivalent results were a double
layer network (with 5 and 4 tangent sigmoidal
neurons) and a single layer network with 17 log
sigmoidal neurons.

Table 1 contains a list of the simulated
damage cases that were run on the ten bar truss
structure. The resulting neural network



predictions of the member cross sectional areas
are also given in Table 1 and presented
pictorially in Figures 7 through 9. Test Case 1
represents a condition where a single member
was damaged (i.e., member number 4). This
type of damage is within the domain of the
training data and gives an indication of the
adequateness of the training of the neural
network. The damage assessment from the
neural network indicates that member 4 is
damaged and the predicted level of damage, A,
= 0.74, compares well with the actual level of
damage used to generate the damaged structure
transfer functions (see Figure 7). The network
also predicts slight damage to members 2 and 9
that is a result of the static indeterminacy in the
ten bar truss. Test Cases 2 and 3 represent
multiple member damage conditions where 2
and 3 members are damaged simultaneously,
respectively. These types of damage are outside
the domain of the training data of the neural
network.  Nonetheless, the neural network
pinpoints the damage very well for both cases
(see Figures 8 and 9). In addition, the level of
damage is predicted within a few percent for
Test Case 2 and within approximately 8% for
Test Case 3.

Twenty Five Bar Transmission Tower

A second example structure for
demonstrating the damage detection
methodology is the twenty five bar transmission
tower shown in Figure 10. This structure has
been used in a number of design optimization
studies and has behavior closer to realistic
structures that would benefit from the damage
detection algorithm than the ten bar truss
structure.

Initially the twenty five bars in the truss
were linked to produce four "design variables".
The lateral batten across the top of the tower
was designated as an independent design
variable, the eight upper diagonals were linked

to a second independent design variable, the
four mid-tower battens were linked to a third
independent design variable, and the lower ten
inert diagonals were linked to a fourth
independent design variable. The cross sections
of the two active members, located in the lower
diagonals as shown in Figure 10, were held
fixed in generating the training data.

A baseline set of transfer functions
between the actuators in the active members and
both the colocated and nearly-colocated sensors
were obtained. A typical baseline transfer
function is shown in Figure 11. Each design
variable was then perturbed and the resulting
structural poles and active member transfer
function zeros recorded for use in training the
neural network. A typical perturbed transfer
function is also shown in Figure 11. As in the
case with the ten bar truss, small, but
distinguishable, differences can be seen in the
transfer functions. Without the neural
networks, no existing methodology can take
these differences and determine the location and
amount of damage present in the structure.

A neural network with a set of input
neurons, two layers of hidden neurons, and a
single layer of output neurons was batch trained
with the baseline and perturbed structure data.
The input layer contained forty neurons
corresponding to 8 poles and 32 zeros. The
two hidden layers contained 7 and 5 neurons
each, while the output layer contained four
neurons corresponding to the cross sectional
area of each independent design variable. The
neural network was batch trained until the
network had approximately converged to its
"best" solution (i.e., 8000 epochs of training).
Examining the trained neural network indicated
that predictions of damage in design variables 2
through 4 should be relatively good.
Predictions for damage in design variable 1
would produce some inaccuracy because the
neural network has not converged to the
weights that yield high quality estimates. This
failure to converge is due to the fact that design




variable 1 does not have a great influence on the
first 8 modes of the structure (i.e., the modes
that were used to train the neural network).
Using additional modes for training the neural
network could alleviate this difficulty.

Three cases of simulated damage were
run on the truss and compared with the
predictions made by the trained neural network.
These three cases are given in Table 2 and
correspond to: Case 1) 25% reduction in
stiffness in design variable 2 only; Case 2) 5%
reduction in design variable 2 and a 25%
reduction in design variable 4; and, Case 3) 5%
reduction in the active member stiffness. The
first case corresponds to an extrapolation of the
training data, the second corresponds to a
combination and extrapolation of training sets,
and the third corresponds to the presence of
damage in the structure that was outside the
domain of the training data.

The results of these three case are given
in Table 2 and shown pictorially in Figures 12
through 14. For Case 1, the neural network is
able to locate the damaged member and give a
reasonable estimate of the damage. The
network predicts a 35% stiffness reduction in
design variable 2 as compared with the actual
reduction of 25%. However, the neural
network tended to smear the damage across
design variables 3 and 4. This smearing effect is
due to the inadequacy of the training data in
representing damage to design variable 1. (The
neural network predicts some increase in
stiffness for variable 1 and counteracts this with
a smeared reduction in the remaining design
variables.) For Case 2, a reasonable prediction
of the damage to design variables 2 and 4 is
given, along with the same difficulty associated
with design variable 1 as seen in Case 1. In
Case 3, the neural network recognizes that the
damaged structure does not include damage to
any of the 4 design variables. Though damage
is present in the structure, with a moderate
movement of the transfer function poles and
zeros, the neural network successfully predicts

that the four design variables that it can
accurately classify are undamaged. In this case,
the neural network does not try to smear the
damage across the design variables, preferring
instead to correctly recognize design variables 1
through 4 as undamaged.

Conclusions

A methodology for detecting damage in
structural systems has been described. The
method utilizes the active members that are
already present for a controlled structure in
conjunction with a trained artificial neural
network. Two  numerical examples
demonstrated the feasibility of the method by
pinpointing the damaged members and by giving
a very good estimate regarding the level of
damage present for each member. Better
estimates of the levels of damage could be
obtained if training data that encompasses the
majority of most likely damage scenarios is
used.

The damage detection methodology
presented herein is potentially applicable to a
wide range of structures where sensor/actuator
transfer function pole and zero information is
available. Though demonstrated only on simple
truss structures, the method could be applied to
bending active members or to active plate and
shell structures. The keys to making the
problem tractable for larger problems are
adequately identifying the areas of the structure
at high risk for potential damage and including
enough pole/zero information in the training of
the neural network.

The numerical results from both the 10
bar truss and the 25 bar transmission tower
demonstrate the feasibility of the method for
detecting and locating damage within structures.
The neural network was able to locate patterns
of damage even for cases where the damage was
outside the domain of the training data.
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Table 1. Simulated Damage Test Cases - Ten Bar Truss

Test Case 1 Test Case 2 Test Case 3
Member Actual NN Area Actual NN Area Actual NN Area
Number Area Area Area
1 1.00 1.00 1.00 0.98 1.00 1.05
2 1.00 0.92 1.00 1.00 1.00 0.96
3 1.00 0.99 0.80 0.82 0.80 0.88
4 0.75 0.74 1.00 0.99 1.00 1.05
5 1.00 1.02 1.00 0.99 1.00 1.00
6 1.00 0.98 1.00 1.02 0.80 0.85
7 1.00 0.99 0.95 0.95 1.00 0.92
8 1.00 1.07 1.00 0.99 1.00 1.11
9 1.00 0.98 1.00 1.00 1.00 0.95
10 1.00 1.02 1.00 1.00 0.70 0.76
Table 2. Simulated Damage Test Cases - Twenty Five Bar Tower
Test Case 1 Test Case 2 Test Case 3
Member Actual NN Area Actual NN Area Actual NN Area
Number Area Area Area
1 1.00 1.04 1.00 0.91 1.00 0.97
2 0.75 0.65 0.95 0.93 1.00 1.00
3 1.00 0.95 1.00 0.96 1.00 1.00
4 1.00 0.92 0.75 0.67 1.00 1.00
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