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Abstract

An integrated approach to the optimum design of control augmented
structural systems is presented in which structural variables and
control variables are changed simultaneously during the design process.
Constraints are imposed on peak transient dynamic displacements and
accelerations, static displacements, natural frequencies, and control
system effort. Side constraints imposed on structural member sizes
and control system thresholds and actuator output forces insure the
generation of physically meaningful designs. Example problems are
presented which bring out the benefits of simultaneous treatment of

both the structural design variables and the control design variables.

Introduction

Interest in large flexible space structures has stimulated
research efforts aimed at integrating the design of structural and
control systems. In many instances the goal of this integrated design
task is to minimize the total system mass while satisfying deformation
criteria and control system limitations.

In the past, the usual technique for designing these systems has
been to fix either the structural or control system design, and
redesign the other to improve the fixed system's performance
characteristics [1—3] . However, recent investigations [4— 6] have

shown the synergistic nature of active and passive design techniques.



As a result, a number of simultaneous design methods have been
suggested in the literature.

These simultaneous structural/control approaches, however, are
sequential in nature within an iterative framework. For example,
Messac and Turner [7] relate the optimal controls to the structural
design variables and then formulate the design problem in terms of
structural variables alone.

A more unified approach to the structural/control design problem
has been presented by Bodden, Junkins et. al. [8—9]. Their design
optimization strategies change both structural (passive) variables and
control (active) variables to improve system performance. In Ref. 8§,
a minimum modification strategy is developed which uses either direct
output feedback control or steady state regulator control in
conjunction with two distinct objective functions, namely, eigenvalue
placement and minimum control gain Euclidian norm [8, Eq. 62]. In Ref.
9, an eigenspace optimization approach is presented in which structural
parameters, sensor/actuator locations, and control feedback gains are
included in the set of variables that may be changed during the design
process.

Previously reported studies, with the exception of Ref. 10, do not
include direct consideration of dynamic response constraints, actuator
force constraints, and static response constraints. The control
augmented structural synthesis work reported in Ref. 10 was limited
to linear feedback control systems and it was assumed that the dynamic

loading conditions were harmonic, so that steady state dynamic response



was of primary interest. The research results reported here will
consider transient dynamic response to arbitrary forcing functions as
well as the use of nonlinear on/off controllers.

In this paper, an integrated approach to control augmented
structural synthesis is presented in which both the structural
(passive) variables and the control (active) variables may be changed
in order to obtain minimum objective function designs. Constraints
on system performance include transient dynamic displacement and/or
acceleration constraints, control actuator force upper bounds, control
system effort constraints, and a structural mass upper bound. Either
structural mass or control effort may be chosen as the objective
function to be minimized. The optimum design is found by solving a
sequence of approximate problems using a wide range of approximation

concepts.

Optimum Design Problem Statement

The design problem posed in the introduction may be stated as: Find
the vector of design variables, d, such that some composite objective
function, W+ FE, is a minimum and the behavior constraints, g,, are
satisfied. Mathematically, this can be written as: Find the vector

d such that
iy
min [ Il'(d)+j Hdndt ] (nH
0

subject to



gmld, )20 (2)
and
d<d<d (3)

where ¥ is the total weight of the structure plus nonstructural masses
and F is the control system effort.

The vector of design variables, d, is made up of beam design
element section properties, nonstructural mass design element radii,
control actuator thresholds and output forces. The structure is
assumed to have fixed configuration, topology, and material.

The twelve degree-of-freedom box beam finite elements shown in
Figure 1 are used to model the structures. A number of analysis
elements may be linked to a single design element and, additionally,
linking within the cross-section of the design element is allowed.
Direct section properties are used as the structural variables in the
optimization.

Nonstructural masses can either be fixed for model definition or
be varied during the optimum design process. The nonstructural masses
(see Figure 2) consist of spherical elements of specified material and
either fixed radii or wvariable radii (depending on whether the
nonstructural masses are used as design elements).

The control system consists of a given number of sensors at
specified degrees-of-freedom and a fixed number of control actuators
or thrusters at specified degrees-of-freedom. The characteristics of
the sensors are invariant during the design process and allow a set

of output measurements, Y, and Y,, to be obtained. Based on these output



measurements, the actuators produce control forces in an attempt to
reduce dynamic response.

Two different control laws have been used. The first (referred
to as Type I, see Appendix A) uses both displacement and velocity
measurements to determine the output control forces and the second
(Type II) uses velocity measurements only. For example, the Type II
control law utilizes velocity measurements, ﬁ” to produce output

forces, u,, according to the relations

0ifiV,l<e,
un —ﬂnif‘)./n’zsnmd }:nZO (4)
+a,if |Y,l=¢,and ¥, <0
0 otherwise

where the velocity threshold, g, and the output force, %, are used as
the design variables. A small amount of vibration is tolerable as
indicated by the presence of the velocity threshold, but any vibration
past this level activates the control system.

The set of constraints, g,, contains static displacement and/or
rotation constraints, dynamic displacement and/or rotation
constraints, dynamic translational and/or rotational acceleration
constraints, and natural frequency comnstraints. It should be noted
that all of the behavior constraints represented by g, are time
parametric in nature except for the static constraints and the natural
frequency constraints.

The side constraints in equation (3) represent upper and lower
bounds on the beam element cross sectional dimensions which have been

transformed to section property side constraints, as well as upper and



lower bounds on the nonstructural mass and control system design
variables. The side constraints are necessary to satisfy analysis
validity limitations in addition to other designer-specified
guidelines.

In general, the optimum design problem represented by equations
(1) through (3) is a complex, nonlinear mathematical programming
problem which precludes direct solution attempts even in the absence
of time parametric constraints [11].

The composite objective function design problem contained in
equations (1) through (3) can be specialized to a weight minimization
problem by deleting F(d.) from equation (1) and adding a control effort

constraint
i
£*> ["Bd.0di= B (5)
0

or, alternatively the basic problem statement can be specialized to a
minimum control effort problem by deleting W(d) from equation (1) and

adding a weight constraint
W > W(d) (6)

In this paper the approximation concepts approach (e.g., see Refs.
10 and 11) is extended to control augmented structural synthesis
problems with time parametric constraints and nonlinear on/off
controllers. This is accomplished by replacing the time parametric
constraints with a finite number of regular constraints corresponding
to response peaks and then using hybrid approximations (see Ref. 12)

to replace these implicit constraint functions with explicit



approximations in terms of the design variables. Move limits are used

on the design variables to protect the quality of each approximate

problem. The approximate form of the weight minimization problem
becomes

min W(d) (7
subject to

En(d)= 0 (8)

E'> E(d) )
and

d'<d<d (10)

and the approximate form of the control effort minimization problem

becomes

min £(d) (11
subject to

En(d)2 0 (12)

W > W(d) (13)
and

d<d<d* (14)

where g,(d) and EUD denote explicit hybrid approximations.
Solution of either the weight minimization problem specified in

equations (1) through (3) and (5) or the control effort minimization



specified in equation (1) through (3) and (6) proceeds as a sequence
of solutions of the approximate problem given by either equations (7)
through (10) or equations (11) through (14). The steps necessary for
the solution of the approximate problem are: 1) analysis of the
structure at the current design; 2) evaluation of the behavior
constraints; Bi deletion of the non-critical constraints; &)
computation of sensitivities of the retained constraints with respect
to all design variables; 5) solution of the approximate problem using
a mathematical programming method, such as CONMIN [13]; and 6) recovery
of element physical dimensions from the optimization variables to yield
a new current design.

There are a number of advantages to using this type of solution
method. First, the method replaces an implicit problem with a sequence
of explicit problems. Second, the size of each approximate
optimization problem is relatively small due to the use of design
element linking and temporary constraint deletion. Third, convergence
of the method is rapid provided a thoughtful choice of design variables

is made so that the approximations are of high quality.

Analysis Methodology

Using a finite element representation of a control-augmented

structure, the system equations of motion can be written as

MK+ KXy= P+ B, (15)



where M, is the system mass matrix, K, is the system stiffness matrix,
P, is the vector of nodal external excitation forces, B, is a matrix
of =zeroes and ones placing the control actuatdrs at nodal
degrees-of-freedom, u, is the vector of actuator force outputs, and JX,
is the vector of nodal displacements and rotations. 1In the dynamic
case, the external forces, the actuator force outputs, and the nodal

displacements and rotations are time dependent. In the static case

the equations of motion reduce to
K..Xlr‘z P (16)

where the s superscript is used to indicate static displacements and
loads.
Vectors of observed displacements and velocities, Y, and f@

respectively, are available from the control system sensors and are

given by

Y, = CuX; (17
and

Vo= Cuki (18)

where C, is a matrix of zeroes and ones locating the control sensors
at nodal degrees-of-freedom.

The normal mode method of analysis [14] is used to obtain the time
dependent displacements, velocities, and accelerations which are
solutions to equation (15). The normal mode method consists of two
basic steps: 1) uncoupling of the equations of motion through usage

of the system eigenvalues and eigenvectors; and 2) time stepping for
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the dynamic modal response followed by transformation back to the
physical degrees-of-freedom.
The normal mode method of analysis is based on the use of a modal

transformation
Xi= dudx (19)

where the modal matrix, ¢,, is a matrix of spatial patterns and the

modal response, ¢, , is a vector of time dependent normal coordinates.
Introduction of the modal transformation given by equation (19)

into (15) and pre-multiplication by the transpose of the modal matrix

yields
G+ Lpopdi+ 0jqe = O+ Zy (20)
where the vector of modal excitation forces, {,, is given by
O = 0P @y
the vector of modal control forces, Z,, is given by

Zy= ¢jkBj:u: (22)

and {, and w, are the kth modal damping ratio and kth natural frequency,
respectively.

Solution for the modal response from equation (20) proceeds very
rapidly with the use of the Wilson-f time stepping method [15]. The
Wilson-8 method is an explicit time integration method which is
unconditionally stable for any time step size provided th%t the 68

parameter is greater than 1.37. Physical degree-of-freedom responses
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can be obtained at each time step using the modal transformation in
equation (19).

Behavior constraints are readily evaluated from the physical
degree-of-freedom responses and non-critical constraints can now be
deleted from further consideration during the current approximate

problem solution.

Calculation of Sensitivities

Behavior sensitivities for the static displacements are calculated
using the partial inverse form of the pseudo-load method [16],
eigenvalue sensitivities archalculated using the method outlined by
Fox and Kapoor [17], and Nelson's method [18] is used to determine the
eigenvector sensitivities.

Time parametric transient displacement and acceleration
sensitivities «can be obtained by differentiating the modal

transformation in equation (19) to give

cX;  Cdy 0qy
_ ‘o 23
Gd = o Wt Pugg (23)
and
eX,  éop., &4
e = + O o4
Gd - aa T Pugg (24)

The difficult terms to obtain, ¢¢,/¢d and ¢§/éd, can be computed in an
efficient manner by writing the modal equations of motion in first

order form as
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[ﬂ - [“0“1 - ijm * [?]QJr [ﬂl 25)

where it is understood that »,=g4, 5,=¢ , and the essential parameters
are defined as 2, =w? andx,=2{w . Now rewrite equation (25) in compact

form
=An+ bQ+ bZ (26)

and apply-the Wilkie-Perkins [19] essential parameter method.

The Wilkie-Perkins essential parameter method takes advantage of
the special form of the A matrix to reduce the amount of time stepping
needed in calculating the time parametric transient response
sensitivities. In this manner, the sensitivities are obtained by: (1)

time stepping K sets of equation (27)

i —. N 34
— Ay = 4 — -+ e 27
6a, IH—AI [ ]C:x lx [Cal ’Ilt (27)

== (28)
012 GO(]
and
oy ony on, .
= T T Ry X (29)
Cay éa, oa,

and (3) transforming essential parameter sensitivities to design

variable sensitivites by

¢ & €y é °x (30)
s
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The computational effort required will now be that needed for time
stepping solutions of K sets of equation (25) for the system response
and K sets of equation (27) for the modal response sensitivities where
K is the number of retained modes.

It should be noted that this method of obtaining sensitivities can
only be used for the passive structural design variables because the
essential parameters, x, and z,, are independent of the active control
design variables. For the active control variables, the sensitivity
equations are obtained by differentiating equation (26) with respect

to the control design variables to yield

-

on —, 6n ez
5d,|’+A’ [ ]éd,!’+ Ed,l’ S

Active control sensitivities are obtained using the finite difference
method on equation (31) because of the complex form of the control laws.

The Wilkie-Perkins essential parameter method is well suited for
further efficiency improvements if parallel processing facilities are
available since the sensitivity of each mode is calculated
independently of all other modes.

Once the sensitivities have been obtained, construction of the
current approximate problem is straightforward. Each approximate
problem is solved using CONMIN [13] and then the cross sectional
dimensions'corresponding to the final values of the direct section

properties are obtained using a linearized recovery scheme [I11].
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Numerical Examples

In this section numerical results for some example problems are
presented. All of the examples presented here are minimum weight
design problems. The problems were solved using a research-level
computer code written on an IBM AT personal computer and modified to

run on an FPS-164 computer.

Planar Grillage Structure - Case 1

The twenty-one degree-of-freedom planar grillage structure shown
in Figure 3 will be used here for examples where weight minimization
is selected as the design objective. The structural material is taken
to be aluminum (see Table 1 for material properties) and the grillage
is subjected to the transient force-time history shown in Figure 3.
The load is applied at node 8, slightly off the centerline of the
structure, so that both symmetric and non-symmetric modes are excited.
Behavior constraints are placed on the vertical dynamic displacement
at nodes 2, 4, 5, 6, and 7 (see Table 1 for specific limiting values).
The dynamic analyses were carried out using ten retained modes
(frequency content up to 100 Hz), a final integration time of 1.0
second, a time step size of 0.0005 seconds, and 2% modal damping (i.e.,
{=002). All relevant input information is shown in Table 1.

The minimum weight design of this structure is sought for the
uncontrolled case, for the controlled case wusing one colocated
sensor/actuator at node 6, and for the controlled case using two

colocated sensor/actuators located at nodes 5 and 7. All controlled
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cases were run using both the Type I actuators and the Type Il actuators
giving a total of five design subcases.

Iteration histories for the uncontrolled design, single Type 1
actuator controlled design, and two Type I actuator controlled design
are shown in Figure 4. (Open symbols denote feasible designs while
solid symbols denote infeasible designs for all iteration histories
in Figures 4-7.) Table 2 contains the optimum design and the critical
constraints for all of these subcases.

A minimum mass of 538 kilograms was obtained for the optimum design
of the uncontrolled structure. Because the structure acts primarily
like a cantilever, design elements 3, 4, and 5 reach their minimum gage
thicknesses at the optimum design and the dynamic displacements at
nodes 6 and 7 reach their upper limit. The optimum design tapers down
from root to tip as expected.

An optimum design of 377 kilograms, 29.9% lighter than the
uncontrolled design, can be obtained with the introduction of a single
Type I actuator at node 6. The dynamic displacement constraint for
node 7 is critical at the optimum design indicating that the control
system is effective at controlling bending response but is unable to
control torsional effects due to its location on the center line of
the structure.

In order to try and control bending behavior and torsional behavior
simultaneously, two Type I actuators were placed on the structure; one
at node 5 and one at node 7. The resulting optimum design has a mass

of 375 kilograms, not significantly lower than that obtained with one
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actuator, but the design and critical constraints are completely
different. The critical constraints at the optimum design for the two
actuator subcase are the dynamic displacement constraints at nodes 5,
6, and 7 and the control system effort constraint (E=55N%sec). These
critical constraints suggest that torsional effects have been
controlled, but the control system effort constraint is hit before
bending effects can be controlled in a more efficient manner than was
done using a single actuator at node 6.

Iteration histories for the uncontrolled design, single Type II
actuator controlled design, and two Type II actuator controlled design
are shown in Figure 5. Table 3 contains the optimum design and the
critical constraints for all of these subcases.

The optimum design for the single Type II actuator controlled
design is 346 kilograms, 30.2% lighter than the uncontrolled optimum
design. The critical constraints, namely the dynamic displacement at
node 7, the actuator force upper bound, and the lower bound beam
thickness dimensions for design elements 3, 4, and 5, suggest that
bending effects are being controlled. However, torsional effects
cannot be controlled due to the location of the actuator on the center
line of the structure.

Simultaneous bending-torsion control was attempted using two Type
II actuators, one at node 5 and one at 7. The two Type II actuator
subcase yields a minimum mass of 259 kilograms, 51.9% lighter than the
uncontrolled minimum mass design. The critical constraints are the

dynamic displacement at node 6, the actuator force upper bound for the

17



actuator at node 7, and the beam thickness lower bounds for design
elements 2, 3, 4, and 5. This critical constraint combination implies
that control of the torsional effects can be achieved in conjunction
with control of the bending effects by using two Type II actuators.
It is observed that the actuator force at node 7 reaches its upper
bound, thereby reducing the torsional effects of the excitation, and

letting both actuators combine to reduce the bending effects.

Planar Grillage Structure - Case 2

The minimum weight design of the planar grillage structure is
sought where constraints are placed on the peak transient accelerations
at nodes 2, 4, 5, 6, and 7 in addition to the constraints on peak
transient displacements considered previously. Furthermore, spherical
nonstructural mass design elements are used to represent the mass of
sensor/actuator pairs for the controlled cases. Each nonstructural
mass design element has a density of p=2770kg/m?® with the initial
radius set equal to a lower bound value of .10 meters (initial mass
of 11.6 kg).

Optimum designs are sought for the uncontrolled structure, for the
controlled structure using three Type I sensor/actuator pairs at nodes
2, 4, and 6, and for the controlled structure using four Type 1
sensor/actuator pairs located at nodes 2, 4, 5, and 7. All control
configurations were also run using Type II actuators.

The optimum design for the uncontrolled transient displacement and

transient acceleration constrained grillage structure is given in Table
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4 while iteration histories for all Case 2 optimum design problems are
shown in Figures 6 and 7. The ;ritical constraints at the optimum
design are the peak dynamic displacement constraints at nodes 5 and 7
and the peak acceleration constraints at nodes 2, 4, and 6. This
combination of critical constraints suggests that the structure acts
predominantly like a cantilever beam without significant torsional
effects.

Optimum designs for the three and four Type I actuator controlled
grillage structures are shown in Table 4 along with the uncontrolled
optimum design. The addition of three Type I actuators yields an
optimum design that is 14.0% lighter than the uncontrolled design.
The four Type 1 controlled configuration has an optimum design that
is 13.0% lighter than the uncontrolled structure. In both Type I
controlled cases the control system acts to control dynamic
displacements while the structural system reduces dynamic acceleration
constraints by taking the form of a combined cantilever-torsional mass
damper. It should be noted that these lighter designs were obtained
despite the large mass penalty (11.6 kg) assigned to each
sensor/actuator pair.

Optimum designs for the Type II controlled planar grillage
structure can be found in Table 5. Three Type II actuators lead to
an optimum design that is 31.1% lighter than the uncontrolled optimum
design and 19.8% lighter than the optimum design found using three Type
I actuators. Four Type II actuators yield an optimum design that is

30.7% lighter than the uncontrolled optimum design and 20.4% lighter
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than the four Type I actuator controlled case. For both of the Type
II controlled cases, the optimum design resembles a torsional mass
damper and all of the actuator force levels fall between 8.27 and 6.95
Newtons.

If the mass penalty assigned to each actuator was lower, then the
mass saving achieved by adding the fourth actuator might exceed the
mass increase associated with adding it. Furthermore, if the loading
function excited higher modes that had to be retained in the dynamic
response calculations, it might be necessary to utilize additional
actuators to control these extra modes.

This planar grillage structure example problem illustrates the
beneficial effect that the addition of a control system can have on
the resulting optimum design when forethought is given to the use and
placement of the actuators. By judicious placement of the actuators,
the primary modes participating in the response can be controlled with
relatively low actuator output force levels, leading to lighter optimum
designs in spite of the deliberately heavy weight penalty associated

with each sensor/actuator pair.

Concluding Remarks

The control augmented structural synthesis approach has been
successfully extended to systems involving general transient response
and nonlinear on/off controllers. An important feature of this work

is that limitations on dynamic response and actuator force levels are
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met by treating them as direct behavior constraints, rather than by
incorporating them into a system performance index. Herein the
integrated structures/control system design problem was first
formulated as a nonlinear mathematical programming problem involving
time parametric constraints. Solutions were then obtained by solving
a sequence of approximate problems. These approximate problems were
constructed by first replacing the time parametric constraints with a
finite number of regular constraints corresponding to response peaks .
and then using hybrid approximations to generate explicit
representations of these constraints in terms of the independent design
variables. The efficiency of the dynamic response sensitivity analysis
was improved significantly by applying the Wilkie-Perkins essential
parameter method. The optimization procedure also incorporates design
variable linking and constraint deletion features. Numerical results
for an example problem, which exhibits characteristics representative
of more complex systems, indicates that substantial improvement can
be achieved through integrated design optimization of structures and

controls.
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Appendix A

CONTROL LAW DESCRIPTION

The first type of actuator, referred to hereafter as a Type I
actuator, utilizes both displacement and velocity measurements and

produces output forces according to the relations

0if |Y,l <4,
~ @, if |¥,| 26,and ¥,>20and ¥,>0
U, = _aniIIYnIZéndeHZOZYnaIIdlYnlssn (A‘l)

+Z,if |¥,] 26,and ¥,<0and ¥, <0
+ i@, if |Y,|28,and ¥, <0< ¥, and |V, <¢,
0 otherwise

where g, is the velocity threshold, 4, is the magnitude of the deadband
region, and u, is the magnitude of the output force. Figure 8
graphically shows the control law described in equation (A.1) for a
typical observed time histery with §=02 and ¢= 5.0.

The presence of the deadband region and velocity threshold
parameters indicate that a small amount of vibration about the zero
displacement point is allowed, but any vibration past this region
activates thelcontrol system.

The second type of actuator, hereafter referred to as a Type II
actuator, wutilizes only velocity measurements and produces output

forces according to the relations
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0if|Y,l<e,

.
id

un “"l—jn lfl):n! 2871 a.nd ).nZO (‘42)
+u,if |Y,l>¢,and ¥, <0
0 otherwise
where again a small amount of vibration is tolerable. Figure 9

graphically depicts the control law described by equation (A.2) for
the same observed time history with e£= 5.0.

For the Type I actuator, the velocity threshold, ¢, , is preassigned
and the design variables are the size of the deadband region, 8, , and
the output force, #,. For the Type II actuator, the velocity threshold,

¢,, and the output force, #, are selected as design variables.

n3
The locations of both the sensors and the actuators are fixed
during the design process. Finally, two options for control system

effort are available. The first is the quadratic form

5
Ezf w,(d,)dt (A4.3)
0
where f is the final integration time in the analysis. The second
option is the linear form
s
Ezj lu(d,0)dr (4.9
0
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Figure 1: Twelve Degree-of-Freedom Box Beam Finite Element
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Figure 2: Spherical Nonstructural Mass Design Element
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Figure 3: Twenty-One Degree-of-Freedom Planar Grillage Example
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TABLE 1

Planar Grillage Example Input Data

Material Properties:

Loading:

Dynamic Constraints:

Control Constraints:

CSD Variable Linking:

E = 7.3x 10" N/m?
p = 2770 kg/m3
v = 0.325

(See Figure 3)

| X2 X,,] <7.5% 104 m
XXl <9.0% 104 m
X, <9.0x10%m

L:X‘fyz, /:\ZJ < 7.5 m/sec?
[ X Xy6l < 9.0 m/sec?
| Xl < 9.0 mfsec?

E < 550 N2—sec
BH=05mfixed, t,=1¢

e = 0.01lm/sec fixed
(Type I only)

Side Constraints

Lower
Variable Units Bound
B m 0.10
H m 0.10
A m 0.001
I m 0.001
r m 0.1
6 m 0.0001
£ m/sec 0.001
u N 0.1

Initial Upper
Design Bound
0.50 2.00
0.50 2.00
0.005 0.02
0.005 0.02

0.1 2.0
0.0002 0.0008
0.005 1.00
5.0 10.0
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Planar Grillage Optimal Designs - Case 1

TABLE 2

(Type I Actuators)

Design 1 Type 1 2 Type 1
Variables Units Uncontrolled Actuator Actuators
Beam 1 ¢ m 0.0060 0.0018 0.0019
Beam 2 ¢ m 0.0015 0.0015 0.0019
Beam 3 ¢ m 0.0010 0.0011 0.0011
Beam 4 1 m 0.0010 0.0020 0.0017
Beam 5 ¢ m 0.0010 0.0012 0.0012
Node 5 6 m | eeee-- ] eeeeaa 0.0002
Node 5 u N | =meeee e 6.77
Node 6 ¢ 1 I e 0.0001 |  =-=--
Node 6 u N | =eee-- 9.25 | @ eee--
Node 7 ¢ m | =e=mee- | eemaa- 0.0002
Node 7 u N |  meeeee ] e 6.40
Total Mass kg 538 377 375
Critical 5,.0.6 X, E, X5, X6

Constraints Xyg, X, X

*Design variable at upper bound

" Design variable at lower bound

Subscripts on r and u indicate nodal locations
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TABLE 3
Planar Grillage Optimal Designs - Case 1

(Type II Actuators)

Design 1 Type II 2 Type 11
Variables Units Uncontrolled Actuator Actuators
Beam 1 ¢ m 0.0060 0.0025 0.0012
Beam 2 ¢ m 0.0015 0.0014 0.0010
Beam 3 ¢ m 0.0010 0.0010 0.0010
Beam 4 ¢ m 0.0010 0.0011 0.0010
Beam 5 ¢ m 0.0010 0.0010 0.0010
Node 5 ¢ m/s | = ===m—— | eeeee- 0.0016
Node 5 u N | e=mee- | eeeee- 7.79
Node 6 ¢ m/s | = @ emee-- 0.0024 |  w=---
Node 6 u N | W = 10.00 |  eeee-
Node 7 ¢ m/s | = =m==== ] eeee-- 0.0024
Node 7 @ N |  ====== ] eeeee- 10.00
Total Mass kg 538 346 259

Critical {3",[;,[5‘ [3‘7[5_7@ G,f;,l;
Constraints Xy X X, w, X

+Dcsign variable at upper bound

" Design variable at lower bound

Subscripts on r and u indicate nodal locations
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Antenna Structure Optimal Designs - Case 2

TABLE 4

(Type I Actuators)

Design 3 Type 1 4 Type 1
Variables Units Uncontrolled Actuators Actuators
Beam 1 ¢ m 0.0046 0.0011 0.0011
Beam 2 ¢ m 0.0016 0.0010 0.0011
Beam 3 ¢ m 0.0020 0.0024 0.0020
Beam 4 ¢ m 0.0014 0.0020 0.0021
Beam 5 ¢ m 0.0018 0.0019 0.0021
Node 2 r m | emeee-- 0.121 0.122
Node 4 r m | me---- 0.122 0.124
Node 5 r m [ W memees ] eemee 0.102
Node 6 r m | eee-—-- 0.131 |  e---e--
Node 7 r m | W mmmeee ] e 0.103
Node 2 6 m | ee---- 0.0002 0.0003
Node 2 u N |  wrre~- 3.96 3.49
Node 4 6 m | meeee- 0.0002 0.0002
Node 4 u N |  =eee-- 4.26 2.21
Node 5 6 m | eemeee ] e 0.0002
Node 5 u N | memeee | eeeee 7.72
Node 6 ¢ m | eee--- 0.0001 |  -----
Node 6 u N | memew- 7.21 | eeme-
Node 7 & R L 0.0002
Node 7 u N | ==m==a ] eeeee- 5.32
Structural

Mass kg 586 437 441
Total Mass kg 586 504 510
Critical Xiso Xy ;Y'yz f\;ﬂ, )?,,, ;\"yé ., ;\"yz

Constraints Xy Xog X Koo

4'Dcsignvariabk:atuppcrbound

" Design vanable at lower bound

Subscripts on r and u indicate nodal locations
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Antenna Structure Optimal Designs - Case 2

TABLE 5

(Type II Actuators)

Design 3 Type 1I 4 Type 11
Variables Units Uncontrolled Actuators Actuators
Beam 1 ¢ m 0.0046 0.0011 0.0012
Beam 2 ¢ m 0.0016 0.0011 0.0014
Beam 3 ¢ m 0.0020 0.0010 0.0011
Beam 4 ¢ m 0.0014 0.0011 0.0012
Beam 5 ¢ m 0.0018 0.0024 0.0016
Node 2 r m | @ me-—-—- 0.130 0.131
Node &4 r m | @ ------ 0.129 0.124
Node 5 r m |  =ee--- ] eeee-- 0.105
Node 6 r m | | ---=--- 0.107 |  ~=----
Node 7 r m | eeme-—- | seeee- 0.102
Node 2 ¢ m/s | = m=-e-- 0.0034 0.0046
Node 2 u N | e=---- 7.29 7.31
Node &4 ¢ m/s | = =e---- 0.0042 0.0032
Node 4 u N |  ====-- 7.04 7.41
Node 5 ¢ m/s | = =-=--- |  m=---- 0.0024
Node 5 u N |  =====- | eee--- 7.28
Node 6 ¢ m/s | = =-me-- 0.0032 |  ==---
Node 6 u N | @ =----- 8.27 | @ mm---
Node 7 ¢ ‘mfs | = =m==-=- |  meeee- 0.0023
Node 7 u N | W ====== | =-e--- 6.95
Structural

Mass kg 586 339 332
Total Mass kg 586 404 406
Critical X, Xy, X 5, X, X, X

Constraints i Ayg

*Design variable at upper bound

" Design vanable at lower bound

Subscripts on r and u indicate nodal Jocations
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